IV. CONDENSED MATTER PHYSICS

UNIT – I CRYSTAL PHYSICS

Lecture - I

Dr. T. J. Shinde Department of Physics Smt. K. R. P. Kanya Mahavidyalaya, Islampur **Semester-I**

IV. CONDENSED MATTER PHYSICS

UNIT – I CRYSTAL PHYSICS

Crystalline state of solids, simple crystal structures, Bragg condition, Brillouin zones, reciprocal lattice, structure factor; comparison of X-ray, electron and neutron diffraction methods; types of bonding.

CRYSTAL PHYSICS

- > INTRODUCTION TO CRYSTAL PHYSICS
- > CRYSTALLINE AND NONCRYSTALLINE SOLIDS
- > SPACE LATTICE
- > CRYSTAL STRUCTURE
- > LATTICE PARAMETERS
- > CRYSTAL SYSTEMS
- > BRAVAIS LATTICES

INTRODUCTION TO CRYSTAL PHYSICS

Crystal Physics' or '*Crystallography*' is a branch of physics that deals with the study of all possible types of crystals and the physical properties of crystalline solids by the determination of their actual structure by using X-rays, neutron beams and electron beams.

- Matter exists in three different states solids, liquids and gases.
- All these states are composed of atoms and molecules.
- When we focus the solids, they are classified into many types based on several properties like electrical, mechanical, magnetic, optical, thermal etc.,
- The main reason for these different properties of solids is their crystal structure.

CLASSIFICATION OF SOLIDS

- Solids can broadly classified into two types based on the arrangement of units of matter. The units of matter may be atoms, molecules or ions. They are,
 - Crystalline solids and
 - Non-crystalline (or) Amorphous solids
- A substance is said to be crystalline when the arrangement of units of matter is regular and periodic.
- A crystalline material has directional properties and therefore called as anisotropic substance.
- ➤ A crystal has a sharp melting point.
- It possesses a regular shape and if it is broken, all broken pieces have the same regular shape.

CRYSTALLINE SOLIDS

> A crystalline material can either be a single (mono) crystal or a polycrystal.

A single crystal consists of only one crystal, whereas the polycrystalline material consists of many crystals separated by well-defined boundaries.

Examples - Metallic crystals – Cu, Ag, Al, Mg etc, Non-metallic crystals – Carbon, Silicon, Germanium,

NON CRYSTALLINE SOLIDS

- ➢In amorphous solids, the constituent particles are not arranged in an orderly manner. They are randomly distributed.
- > They do not have directional properties and so they are called as `isotropic' substances.
- They have wide range of melting point and do not possess a regular shape. Examples: Glass, Plastics, Rubber etc.,

ATOMIC ARRANGEMENT IN CRYSTALS

(a) mono (or) single crystals (b) polycrystalline solids (c) amorphous solids

CRYSTALS

It is a substance in which the constituent particles are arranged in a systematic geometrical pattern.

SPACE LATTICE

The regular and periodic arrangement of infinite number of points in a space is called space lattice. It is also called as Crystal lattice.

- \triangleright Consider the points P, Q and R.
- Let us join the points P and Q by a straight line, and the point P and R by another straight line.
- The line PQ is taken as X-axis and the line PR is taken as Y-axis.
- The distance between any two successive lattice points in the X-direction is taken as `a'.

>Similarly, the distance between any two successive lattice points along the Y-direction is taken as `b'.

> Here a and b are said to be lattice translational vectors. Consider a square lattice in which a=b.

BASIS AND CRYSTAL STRUCTURE

- A crystal structure is formed by associating every lattice point with an unit assembly of atoms or molecules identical in composition, arrangement and orientation. This unit assembly is called the `*basis*'.
- When the basis is repeated with correct periodicity in all directions, it gives the actual crystal structure.
- > The crystal structure is real, while the lattice is imaginary.

UNIT CELL

A unit cell is defined as a fundamental building block of a crystal structure, which can generate the complete crystal by repeating its own dimensions in various directions.

- ➤Consider a unit cell consisting of three mutually perpendicular edges OA, OB and OC as shown in figure. Draw parallel lines along the three edges.
- These lines are taken as crystallographic axes and they are denoted as X, Y and Z axes.
- Similarly the angles between Y and Z and Z and X axes are denoted by ' γ ' and ' α ' respectively as shown in the figure. These angles α , β and γ are called as *interaxial angles or interfacial angles*.
- To represent a lattice, the three interfacial angles and their corresponding intercepts are essential. These six parameters are said to be *lattice parameters*.

PRIMITIVE CELL

It is the smallest unit cell in volume constructed by primitives. It consists of only one full atom

- A primitive cell is one, which has got the points or atoms only at the corners of the unit cell.
- If a unit cell consists of more than one atom, then it is not a primitive cell.
- Example for primitive cell :Simple Cubic unit cell.
- Examples for non-primitive cell:BCC and FCC unit cell.

Unit Cell Configurations

The space lattices formed by unit cells are marked by the following symbols.

 \blacktriangleright Primitive lattice:P \rightarrow having lattice points only at the corners of the unit cell.

Solution > Base centred lattice: $C \rightarrow$ having lattice points at the corners as well as at the top and bottom base centres of the unit cell.

➢ Body centred lattice:I → having lattice points at the corners as well as at the body centre of the unit cell.

Face centred lattice: $F \rightarrow$ having lattice points at the corners as well as at the face centres of the unit cell.

CRYSTALS SYSTEMS

- Cubic (isometric)
- ➤ Tetragonal
- > Orthorhombic
- Trigonal (rhombohedral)
- ≻ Hexagonal
- ➤ Monoclinic and
- ➤ Triclinic

> Bravais in 1948 showed that 14 types of unit cells under seven crystal systems are possible. They are commonly called as `*Bravais lattices*

CRYSTAL SYSTEM

NUMBER OF ATOMS PER UINT CELL

Simple cubic

1 atom/unit cell (8 x 1/8 = 1)

Body-centered cubic

2 atoms/unit cell (8 x 1/8 + 1 = 2)

Face-centered cubic

4 atoms/unit cell $(8 \times 1/8 + 6 \times 1/2 = 4)$

Face Centered Cubic (FCC) Structure

(c)

Two representations of a unit cell

Figure 16.17

6(atoms on faces) + 8(atoms on corners) = 6(1/2) + 8(1/8)= 3 + 1= 4

Body Centered Cubic (BCC) Structure

(a)

(b)

(c)

How many atoms are there in BCC structure?

Relationship Between the Atomic Radius and the Edge Length in Three Different Unit Cells

a = 2r

$$b = 4r$$

$$b^2 = a^2 + a^2$$

$$16r^2 = 2a^2$$

$$a = \sqrt{8}r$$

MILLER INDICES OF LATTICE PLANE

In crystel there exist directions and planes which contain a large concentration of atoms. It is necessary to locate these directions and planes for crystal analysis. To recognize the orientation of planes and directions was discovered by Miller. Miller developed a method to designate a plane in a crystal by three number (hkl) known as Miller indices.

It is also a ratio of crystal axes but for the sake of brevity the ratio sign is omitted. It uses the relative intercepts of the faces with the axes. Miller indices is a reciprocals of parameters. The expression of Miller indices by the whole number and zero is called "The law of rational indices" **Some characteristic:**

1- In all crystal systems (except hexagonal) they are three digit , (hkl).

2- In hexagonal system they are four digit , (hkil).

i= -(h+k)

h+k+i=0

The Miller Index for a crystal face is found by

1-first determining the parameters

2-second inverting the parameters, and

3-third clearing the fractions.

For example, if the face has the parameters 1 a, 1 b, ∞ c

inverting the parameters would be 1/1, 1/1, $1/\infty$

this would become 1, 1, 0

the Miller Index is written inside parentheses with no commas - thus (110)

Procedures to find miller indices of planes

Consider the plane ABC . This plane cuts the crystallographic axes x, Y, Z with intercepts 3a, b, 2c

Step –I Determine the intercept made by plane with crystallographic axis x,y,z

3a, b, 2c Let pa, qb, rc

For above plane ABC, p=3, q=1, r=2

Step -II Take reciprocal of numerical intercept values

1/3, 1/1 1/2Step –III Convert these reciprocal into whole number by multipying each with their LCM For above plane LCM = 6

6x1/3, 6x 1/1, 6x 1/2

2 6 3

Step –IV Enclose these number into bracket . This represents inices of given plane (2 6 3) .

Different types of Miller indices

Examples

<u>Face</u>	<u>a</u>	b	<u>C</u>	Parameters	<u>Reciprocal</u>	Miller index
AKP	1	1	1	1a:1b:1c	1/1 : 1/1 : 1/1	(111)
XYZ	2	2	2	1a:2b:2c	1/2 : 1/2 : 1/2	(111)
ABC	1	4	3	1a:4b:3c	1/1 : 1/4 : 1/3	?
	1	3	∞	1a:3b:∞c	1/1:1/3:1/∞	?
	3/2	3	∞	2/3a:3b:∞c	2/3 : 1/ 3: 1/ ∞	?
	3	3	3	3a:3b:3c	1/3 : 1/3 : 1/3	?

EQUIVALENT SITES (ATOMIC POSITIONS) IN CUBIC UNIT CELLS

Simple Cubic, SC - one per unit cell - corner atoms only (0,0,0) (1,0,0) (1,1,0) (0,1,0)(0,0,1) (1,0,1) (1,1,1) (0,1,1)Body Centered Cubic, BCC - two per unit cell - corner atoms as above, plus (1/2, 1/2, 1/2)Face Centered Cubic, FCC - four per unit cell - corner atoms as above plus (1/2, 1/2, 0) (1/2, 0, 1/2) (0, 1/2, 1/2)(1, 1/2, 1/2) (1/2, 1, 1/2) (1/2, 1/2, 1)+z(0, 0, 1)-1, 0, 0)(0, 0, 1)(0, 1, 1)(1, 0, 1)(0, 1, 0)(0, -1, 0)(1, 1, 1)(0, 0, 0)a (0, 1, 0)(1, 0, 0)(0, 0, 0)(0, 0, -1)(1, 1, 0)(1, 0, 0)(a)(b)